Fractional Calculus of the Generalized Wright Function
نویسندگان
چکیده
The paper is devoted to the study of the fractional calculus of the generalized Wright function pΨq(z) defined for z ∈ C, complex ai, bj ∈ C and real αi, βj ∈ R (i = 1, 2, · · · p; j = 1, 2, · · · , q) by the series
منابع مشابه
On certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملOn the generalized fractional integrals of the generalized Mittag-Leffler function
ABSTRACT In this paper, we employ the generalized fractional calculus operators on the generalized Mittag-Leffler function. Some results associated with generalized Wright function are obtained. Recent results of Chaurasia and Pandey are obtained as special cases. 2000 MATHEMATICS SUBJECT CLASSIFICATION 33C45, 47G20, 26A33.
متن کاملSome Weighted Integral Inequalities for Generalized Conformable Fractional Calculus
In this paper, we have obtained weighted versions of Ostrowski, Čebysev and Grüss type inequalities for conformable fractional integrals which is given by Katugompola. By using the Katugampola definition for conformable calculus, the present study confirms previous findings and contributes additional evidence that provide the bounds for more general functions.
متن کاملDistortion and Convolutional Theorems for Operators of Generalized Fractional Calculus Involving Wright Function
Using the Wright’s generalized hypergeometric function, we investigate a class W (q, s;A,B, λ) of analytic functions with negative coefficients. We derive many results for the modified Hadamard product of functions belonging to the class W (q, s;A,B, λ). Moreover, we generalize some of the distortion theorems to the classical fractional integrals and derivatives and the Saigo (hypergeometric) o...
متن کاملCertain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کامل